当我们学习Elasticsearch时,经常会遇到如下的几个概念:
- Reverted index
- doc_values
- source?
这个几个概念分别指的是什么?有什么用处?如何配置它们?只有我们熟练地掌握了这些概念,我们才可以正确地使用它们。
Inverted index
inverted index(反向索引)是Elasticsearch和任何其他支持全文搜索的系统的核心数据结构。 反向索引类似于您在任何书籍结尾处看到的索引。 它将出现在文档中的术语映射到文档。
例如,您可以从以下字符串构建反向索引:
Elasticsearch从已建立索引的三个文档中构建数据结构。 以下数据结构称为反向索引(inverted index):
Term Frequency Document (postings)
choice 1 3
day 1 2
is 3 1,2,3
it 1 1
last 1 2
of 1 2
of 1 2
sunday 2 1,2
the 3 2,3
tomorrow 1 1
week 1 2
yours 1 3
在这里反向索引指的的是,我们根据term来寻找相应的文档ids。这和常规的根据文档id来寻找term相反。
请注意以下几点:
- 删除标点符号并将其小写后,文档会按术语进行细分。
- 术语按字母顺序排序
- “Frequency”列捕获该术语在整个文档集中出现的次数
- 第三列捕获了在其中找到该术语的文档。 此外,它还可能包含找到该术语的确切位置(文档中的偏移)
在文档中搜索术语时,查找给定术语出现在其中的文档非常快捷。 如果用户搜索术语“sunday”,那么从“Term”列中查找sunday将非常快,因为这些术语在索引中进行了排序。 即使有数百万个术语,也可以在对术语进行排序时快速查找它们。
随后,考虑一种情况,其中用户搜索两个单词,例如last sunday。 反向索引可用于分别搜索last和sunday的发生; 文档2包含这两个术语,因此比仅包含一个术语的文档1更好。
反向索引是执行快速搜索的基础。 同样,很容易查明索引中出现了多少次术语。 这是一个简单的计数汇总。 当然,Elasticsearch在我们在这里解释的简单的反向排索引的基础上使用了很多创新。 它兼顾搜索和分析。
默认情况下,Elasticsearch在文档中的所有字段上构建一个反向索引,指向该字段所在的Elasticsearch文档。也就是说在每个Elasticsearch的Lucene里,有一个位置存放这个inverted index。
在Kibana中,我们建立一个如下的文档:
1 | PUT twitter/_doc/1 |
当这个文档被建立好以后,Elastic就已经帮我们建立好了相应的inverted index供我们进行搜索,比如:
1 | GET twitter/_search |
我们可与得到相应的搜索结果:
1 | { |
如果我们想不让我们的某个字段不被搜索,也就是说不想为这个字段建立inverted index,那么我们可以这么做:
1 | DELETE twitter |
在上面,我们通过mapping对user字段进行了修改:
1 | "user": { |
也就是说这个字段将不被建立索引,我们如果使用这个字段进行搜索的话,不会产生任何的结果:
1 | GET twitter/_search |
搜索的结果为:
1 | { |
显然是没有任何的结果。但是如果我们对这个文档进行查询的话:
1 | GET twitter/_doc/1 |
显示的结果是:
1 | { |
显然user的信息是存放于source里的。只是它不被我们所搜索而已。
如果我们不想我们的整个文档被搜索,我们甚至可以直接采用如下的方法:
1 | DELETE twitter |
那么整个twitter索引将不建立任何的inverted index,那么我们通过如下的命令:
1 | PUT twitter/_doc/1 |
上面的命令执行的结果是,没有任何搜索的结果。更多阅读,可以参阅“Mapping parameters: enabled”(https://www.elastic.co/guide/en/elasticsearch/reference/current/enabled.html)。
Source
在Elasticsearch中,通常每个文档的每一个字段都会被存储在shard里存放source的地方,比如:
1 | PUT twitter/_doc/2 |
在这里,我们创建了一个id为2的文档。我们可以通过如下的命令来获得它的所有的存储的信息。
1 | GET twitter/_doc/2 |
它将返回:
1 | { |
在上面的_source里我们可以看到Elasticsearch为我们所存下的所有的字段。如果我们不想存储任何的字段,那么我们可以做如下的设置:
1 | DELETE twitter |
那么我们使用如下的命令来创建一个id为1的文档:
1 | PUT twitter/_doc/1 |
那么同样地,我们来查询一下这个文档:
1 | GET witter/_doc/1 |
显示的结果为:
1 | { |
显然我们的文档是被找到了,但是我们看不到任何的source。那么我们能对这个文档进行搜索吗?尝试如下的命令:
1 | GET twitter/_search |
显示的结果为:
1 | { |
显然这个文档id为1的文档可以被正确地搜索,也就是说它有完好的inverted index供我们查询,虽然它没有字的source。
那么我们如何有选择地进行存储我们想要的字段呢?这种情况适用于我们想节省自己的存储空间,只存储那些我们需要的字段到source里去。我们可以做如下的设置:
1 | DELETE twitter |
在上面,我们使用include来包含我们想要的字段,同时我们通过exclude来去除那些不需要的字段。我们尝试如下的文档输入:
1 | PUT twitter/_doc/1 |
通过如下的命令来进行查询,我们可以看到:
1 | GET twitter/_doc/1 |
结果是:
1 | { |
显然,我们只有很少的几个字段被存储下来了。通过这样的方法,我们可以有选择地存储我们想要的字段。
在实际的使用中,我们在查询文档时,也可以有选择地进行显示我们想要的字段,尽管有很多的字段被存于source中:
1 | GET twitter/_doc/1?_source=name,location |
在这里,我们只想显示和name及location相关的字段,那么显示的结果为:
1 | { |
更多的阅读,可以参阅文档“Mapping meta-field: _source”
(https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html)
Doc_values
默认情况下,大多数字段都已编入索引,这使它们可搜索。反向索引允许查询在唯一的术语排序列表中查找搜索词,并从中立即访问包含该词的文档列表。
sort,aggregtion和访问脚本中的字段值需要不同的数据访问模式。除了查找术语和查找文档外,我们还需要能够查找文档并查找其在字段中具有的术语。
Doc values是在文档索引时构建的磁盘数据结构,这使这种数据访问模式成为可能。它们存储与_source相同的值,但以面向列的方式存储,这对于排序和聚合而言更为有效。几乎所有字段类型都支持Doc值,但对字符串字段除外。
默认情况下,所有支持doc值的字段均已启用它们。如果您确定不需要对字段进行排序或汇总,也不需要通过脚本访问字段值,则可以禁用doc值以节省磁盘空间:
比如我们可以通过如下的方式来使得city字段不可以做sort或aggregation:
1 | DELETE twitter |
在上面,我们把city字段的doc_values设置为false。
1 | "city": { |
我们通过如下的方法来创建一个文档:
1 | PUT twitter/_doc/1 |
那么,当我们使用如下的方法来进行aggregation时:
1 | GET twitter/_search |
在我们的Kibana上我们可以看到:
1 | { |
显然,我们的操作是失败的。尽管我们不能做aggregation及sort,但是我们还是可以通过如下的命令来得到它的source:
1 | GET twitter/_doc/1 |
显示结果为:
1 | { |
更多阅读请参阅“Mapping parameters: doc_values”(https://www.elastic.co/guide/en/elasticsearch/reference/7.4/doc-values.html)。